8,198 research outputs found

    Ventricular Tachycardia in the Absence of Structural Heart Disease

    Get PDF
    In up to 10% of patients who present with ventricular tachycardia (VT), obvious structural heart disease is not identified. In such patients, causes of ventricular arrhythmia include right ventricular outflow tract (RVOT) VT, extrasystoles, idiopathic left ventricular tachycardia (ILVT), idiopathic propranolol-sensitive VT (IPVT), catecholaminergic polymorphic VT (CPVT), Brugada syndrome, and long QT syndrome (LQTS). RVOT VT, ILVT, and IPVT are referred to as idiopathic VT and generally do not have a familial basis. RVOT VT and ILVT are monomorphic, whereas IPVT may be monomorphic or polymorphic. The idiopathic VTs are classified by the ventricle of origin, the response to pharmacologic agents, catecholamine dependence, and the specific morphologic features of the arrhythmia. CPVT, Brugada syndrome, and LQTS are inherited ion channelopathies. CPVT may present as bidirectional VT, polymorphic VT, or catecholaminergic ventricular fibrillation. Syncope and sudden death in Brugada syndrome are usually due to polymorphic VT. The characteristic arrhythmia of LQTS is torsades de pointes. Overall, patients with idiopathic VT have a better prognosis than do patients with ventricular arrhythmias and structural heart disease. Initial treatment approach is pharmacologic and radiofrequency ablation is curative in most patients. However, radiofrequency ablation is not useful in the management of inherited ion channelopathies. Prognosis for patients with VT secondary to ion channelopathies is variable. High-risk patients (recurrent syncope and sudden cardiac death survivors) with inherited ion channelopathies benefit from implantable cardioverter-defibrillator placement. This paper reviews the mechanism, clinical presentation, and management of VT in the absence of structural heart disease

    LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions.

    Get PDF
    Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: "fixed sphere-of-influence," or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an "adaptive sphere-of-influence," or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original "fixed-number-of-points," or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu)

    Going with the floe

    Get PDF
    Julia Wilkinson and a Zooniverse citizen-science team examine Arctic auroral data, using observations from the ill-fated 19th-century Arctic exploration ship USS Jeannette

    Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 3 (2012): 404, doi:10.3389/fmicb.2012.00404.Iron (Fe) oxides exist in a spectrum of structures in the environment, with ferrihydrite widely considered the most bioavailable phase. Yet, ferrihydrite is unstable and rapidly transforms to more crystalline Fe(III) oxides (e.g., goethite, hematite), which are poorly reduced by model dissimilatory Fe(III)-reducing microorganisms. This begs the question, what processes and microbial groups are responsible for reduction of crystalline Fe(III) oxides within sedimentary environments? Further, how do changes in Fe mineralogy shape oxide-hosted microbial populations? To address these questions, we conducted a large-scale cultivation effort using various Fe(III) oxides (ferrihydrite, goethite, hematite) and carbon substrates (glucose, lactate, acetate) along a dilution gradient to enrich for microbial populations capable of reducing Fe oxides spanning a wide range of crystallinities and reduction potentials. While carbon source was the most important variable shaping community composition within Fe(III)-reducing enrichments, both Fe oxide type and sediment dilution also had a substantial influence. For instance, with acetate as the carbon source, only ferrihydrite enrichments displayed a significant amount of Fe(III) reduction and the well-known dissimilatory metal reducer Geobacter sp. was the dominant organism enriched. In contrast, when glucose and lactate were provided, all three Fe oxides were reduced and reduction coincided with the presence of fermentative (e.g., Enterobacter spp.) and sulfate-reducing bacteria (e.g., Desulfovibrio spp.). Thus, changes in Fe oxide structure and resource availability may shift Fe(III)-reducing communities between dominantly metal-respiring to fermenting and/or sulfate-reducing organisms which are capable of reducing more recalcitrant Fe phases. These findings highlight the need for further targeted investigations into the composition and activity of speciation-directed metal-reducing populations within natural environments.This work was supported by a National Science Foundation Graduate Research Fellowship under grant no. DGE-0946799 and DGE-1144152 awarded to Christopher J. Lentini

    The Total Synthesis of (–)-Scabrolide A

    Get PDF
    The first total synthesis of the norcembranoid diterpenoid scabrolide A is disclosed. The route begins with the synthesis of two chiral pool-derived fragments, which undergo a convergent coupling to expediently introduce all 19 carbon atoms of the natural product. An intramolecular Diels–Alder reaction and an enone–olefin cycloaddition/fragmentation sequence are then employed to construct the fused [5–6–7] linear carbocyclic core of the molecule and complete the total synthesis

    Strategies for Wildlife Disease Surveillance

    Get PDF
    Epidemiologic surveillance is defined by the Centers for Disease Control and Prevention (CDC) as the ongoing systematic and continuous collection, analysis, and interpretation of health data\u27: The objective of surveillance is to generate data for rapid response to the detection of a disease of concern to apply prevention, control, or eradication measures as well as to evaluate such interventions. This is distinct from disease monitoring, which usually does not involve a particular response to disease detection. Surveillance for wildlife diseases has increased in importance due to the emergence and re-emergence of wildlife diseases that are threats to human, animal, and ecosystem health, or could potentially have a negative economic impact. It has been estimated that 75% of emerging human diseases are zoonotic in origin, of which the majority originate from wildlife (Taylor et al. 2001). However, there are unique challenges concerning wildlife disease surveillance such that disease and pathogens can be very difficult to detect and measure in wild animals. These challenges have been described previously (Wobeser 2006), but one of the primary issues is that disease in wildlife often goes unrecognized, especially in remote locations. Furthermore, sick and dead animals are very difficult to detect, as animals will disguise the signs of illness or hide when diseased. Carcasses from diseased animals are also rapidly removed by scavengers or will rapidly decompose, rendering them suboptimal for diagnostic purposes. There is also a lack of validated diagnostic tests for most wildlife disease agents as well as baseline data. The paucity of laboratory capacity with expertise in wildlife disease diagnostic investigation is also an impediment. Finally, surveillance networks for wildlife diseases that perform field investigations and report disease events are under-developed in most regions of the world. Despite these challenges, a number of very important epidemiological surveillance projects have been ongoing or recently developed, and some examples are described in this chapter. The examples are mostly drawn from the experiences of the U.S. Geological Survey National Wildlife Health Center (NWHC) and are provided to illustrate the different surveillance strategies and sampling techniques that can be used and have proven successful. Some future directions for wildlife disease surveillance are also suggested

    Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion

    Get PDF
    BACKGROUND: Like many other pathogens, enterohaemorrhagic and enteropathogenic strains of Escherichia coli employ a type-III secretion system to translocate bacterial effector proteins into host cells, where they then disrupt a range of cellular functions. This system is encoded by the locus for enterocyte effacement. Many of the genes within this locus have been assigned names and functions through homology with the better characterised Ysc-Yop system from Yersinia spp. However, the functions and homologies of many LEE genes remain obscure. RESULTS: We have performed a fresh bioinformatics analysis of the LEE. Using PSI-BLAST we have been able to identify several novel homologies between LEE-encoded and Ysc-Yop-associated proteins: Orf2/YscE, Orf5/YscL, rORF8/EscI, SepQ/YscQ, SepL/YopN-TyeA, CesD2/LcrR. In addition, we highlight homology between EspA and flagellin, and report many new homologues of the chaperone CesT. CONCLUSION: We conclude that the vast majority of LEE-encoded proteins do indeed possess homologues and that homology data can be used in combination with experimental data to make fresh functional predictions

    The Ucsd/Keck Damped Lya Abundance Database: A Decade of High Resolution Spectroscopy

    Full text link
    We publish the Keck/HIRES and Keck/ESI spectra that we have obtained during the first 10 years of Keck observatory operations. Our full sample includes 42 HIRES spectra and 39 ESI spectra along 65 unique sightlines providing abundance measurements on ~85 damped Lya systems. The normalized data can be downloaded from the journal or from our supporting website: http://www.ucolick.org/~xavier/DLA/. The database includes all of the sightlines that have been included in our papers on the chemical abundances, kinematics, and metallicities of the damped Lya systems. This data has also been used to argue for variations in the fine-structure constant. We present new chemical abundance measurements for 10 damped Lya systems and a summary table of high-resolution metallicity measurements (including values from the literature) for 153 damped Lya systems at z>1.6. We caution, however, that this metallicity sample (and all previous ones) is biased to higher N(HI) values than a random sample.Comment: 55 pages, 11 figures. Accepted to ApJS. See http://www.ucolick.org/~xavier/DLA/ for the dat

    Tower-based greenhouse gas fluxes in a restored tidal freshwater wetland: A shared resource for research and teaching.

    Get PDF
    The goals of this study are: 1) to use an eddy-covariance system to continuously measure wetland-atmosphere CO2 and CH4 exchange in a restored forested wetland, 2) to quantity C sequestration in plant biomass and soils in restored (Kimages Creek watershed) and old-growth (Harris Creek watershed) forested wetlands, and 3) to establish a shared long-term, shared research and teaching platform centered on eddy-covariance tower measurements. Since the old-growth forest wetland has had longer to accumulate C, the current C stocks are likely much larger than those of the restored wetland; however, the rate of C accumulation (i.e., C sequestration or net ecosystem production) may be higher in young ecosystems (De Simon et al. 2 | Goodrich-Stuart (Stuart-Haëntjens) 2012). While natural wetlands generally offset the warming effect of CH4 emissions by also sequestering large amounts of CO2, but it has been suggested that, in the short-term, this may not hold true for restored wetlands (Petrescu et al. 2015). Very few restored wetlands have studied, however, so knowledge is lacking in this area

    Evidence of Multiple r-Process Sites in the Early Galaxy: New Observations of CS 22892-052

    Full text link
    First results are reported of a new abundance study of neutron-capture elements in the ultra-metal-poor (UMP; [Fe/H] = -3.1) halo field giant star CS 22892-052. Using new high resolution, high signal-to-noise spectra, abundances of more than 30 neutron-capture elements (Z>30) have been determined. Six elements in the 40<Z<56 domain (Nb, Ru, Rh, Pd, Ag and Cd) have been detected for the first time in a UMP star. Abundances are also derived for three of the heaviest stable elements (Os, Ir, and Pb). A second transition of thorium, Th{4086}, confirms the abundance deduced from the standard Th{4019} line, and an upper limit to the abundance of uranium is established from the absence of the U{3859} line. As found in previous studies, the abundances of the heavier (Z>=56) stable neutron-capture elements in CS 22892-052 match well the scaled solar system r-process abundance distribution. From the observed Th abundance, an average age of ~= 16 +/- 4 Gyr is derived for cs22892-052, consistent with the lower age limit of ~= 11 Gyr derived from the upper limit on the U abundance. The concordance of scaled solar r-process and CS 22892-052 abundances breaks down for the lighter neutron-capture elements, supporting previous suggestions that different r-process production sites are responsible for lighter and heavier neutron-capture elements.Comment: To be published in the Astrophysical Journal Letter
    • …
    corecore